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Abstract: Since the dimensions of the contact area are small compared to the curvature 

radii of the two adjacent surfaces, evaluated in the initial contact area, it is often considered 

that these radii are infinite. In this hypothesis, the bodies in contact can be assimilated through 

elastic half-spaces. Elastic half-space can be loaded by applying loads on its boundary plane 

which, in the simplest situations, can be concentrated or uniformly distributed along a straight 

line. The principle of superimposition allows to appreciate the effects of continuous load 

distributions, of interest, applied to regions of the boundary plan. In the paper, starting from a 

general case of normal load distribution on an infinitely long strip, the expressions of the 

normal displacements w are established. 
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1. Introduction 

The bodies in contact can be assimilated 

through elastic half-spaces. By elastic half-

space is meant that part of the space limited by 

a plane, which is filled with an elastic material 

of known parameters ν (Poisson`s ratio), E 

(Young`s modulus) and G shear modulus). 

Elastic half-space can be loaded by loads 

applied on its boundary plane. These forces 

can be concentrated or uniformly distributed 

along a straight line. The problems of 

determining the displacements and stresses 

produced in the half-space by these simple 

loads are called fundamental problems of the 

elastic half-space. 

The case of loading the elastic half-space 

with a concentrated force, normal to the 

boundary plane, is called Boussinesq's 

problem. Loading the elastic half-space with a 

concentrated force contained in the boundary 

plane leads to Cerruti's problem. The 

combined Boussinesq-Cerruti problem arises 

when the half-space is loaded with an oblique 

concentrated force, applied at a point on the 

boundary of the half-space. If the half-space is 

loaded with a normal load, uniformly 

distributed along a line contained in the 

boundary plane, Flamant's problem appears. 

The same category of fundamental problems 

includes the principle of superimposition on 

the elastic half-space, which allows the 

generalization of the solutions to the above 

problems in the case of continuous load 

distributions on a certain region of the 

boundary plane. 

2. Distributes loads on infinitely long 

strips, constant width 

Let it be a strip of constant width 2b, 

extended to infinity in the boundary plane of 

the elastic half-space, having y as the axis of 

symmetry and the x-axis perpendicular to y at 

an arbitrary point of its own. In a cross section 

on the strip, the load distribution is 

independent of y, p p i j k= = + +( )x p p px y z . 

The displacements acquired by the points of 

the boundary plane in the normal direction to 

the half-space under the action of normal 

loads, p p xz = ( ) , tangential tractions px
 and 

p y  being considered negligible or zero, will be 

determined, Ref. [1]. 

Following the methodology developed by 

Johnson for point contacts, Ref. [2], a general 
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case will be addressed, in which the normal 

load distribution is given by the equation: 

( )
 

= − 
 

n
2

0 2

x
p x p 1

b
 (1) 

where 0p  represents the pressure value on the 

symmetry axis of the strip, and n is an 

exponent that can take various values. Thus, if 

n = 0, ( ) 0p x p= , and the loading is uniform 

on the strip of width 2b.  

The case /n 1 2=  represents a loading of 

semi-elliptical profile, and the case /n 1 2= −  

is of interest for flat surface contact.  

The loading is characterized by the load q 

distributed on the strip’s length unit.  

The equilibrium equation of the half-space 

takes the form: 

( )

nb b 2

0 2

b b

x
q p x  dx p 1 dx

b

+ +

− −

 
= = − 

 
   (2) 

The principle of superposition for the 

solution of Flamant's problem leads to the 

following expression of the normal 

displacement: 
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(3) 

If the pressure has the form [1] in 

dimensionless coordinates /x x b =  and 

/x x b=  , equation [3] has the expression: 

( )

( ) ln(

ln .

1

2 n 2

0

1

0

w x

1
p b 1 x x x  ) dx

2 G

1 b
q

 G r

+

−

=

−
  − − − −



−
−


  

(4) 

 

 

Uniform pressure distribution n 0=   

Equation [2] leads to the following 

minimum pressure value: 

0

q
p

2b
=  (5) 

so that expression [4] of displacement w 

becomes: 

( )

ln( ) ln

1

2

01

w x

1 1 b
q x x  dx q

4  G  G r

+

−

=

− −
 − − −

 
 

(6) 

The substitution ( )2x x t− = , leads to the 

primitive ( ) ( )ln
2

x x x x 2  − − − −
 

 which, 

between the limits of integration 1−  and 1+ , 

provides the following expression of the 

displacement w: 

( ) ( )

( ) ( )

( )

ln

ln ln .

2

2

0

w x

1
q 4 1 x 1 x

4 G

b
1 x 1 x 4

r

=

− = − − − −



− + + − 



 

(7) 

On the symmetry axis of the loading strip, 

x 0= , the displacement ( )w x  becomes: 

( ) ln
0

1 b
w 0 q 1

G r

 −
= − 
  

 (8) 

and at the strip’s edges it has the expression: 

( ) ln
0

1 2b
w 1 q 1

G r

 −
 = − 

  
 (9) 

The central displacement of the half-space 

in relation to the contact strip edges: 
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( ) ( ) ln
1

w w 0 w 1 q 2
G

−
 = −  =


 (10) 

 

Pressure distribution with /n 1 2= −  

The case /n 1 2= −  represents a load with a 

minimum pressure 0p  on the symmetry axis of 

the strip and tending to infinity on its edges. 

The minimum pressure value 0p  results from 

the specification of equation [2]: 

0

q
p

 b
=


 (11) 

Relation [4] leads to the following integral 

expression of the displacement w: 

( )

( )

ln
ln

21

0
2

01

w x

x x1 1 b
p b dx q

2 G 2 G r1 x

+

−

=

−− −
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(12) 

To explain the displacement, we resort to the 

evaluation of the derivative /w x   on the 

interval [ , ]1  1− + . Since the integral involved 

in relation [12] is parametric with respect to 

x , the displacement derivative is: 

( )









w

x G
p b

dx

x x x
=

− 

 − − −

+


1

1
0 2

1

1

 (13) 

Applying the substitution / ( )t 1 x x= −  in 

relation [13] leads to the conclusion that the 

derivative is zero inside the loaded strip. As a 

result, on the strip of width 2b, the 

displacement w is constant. 

The constant displacement value 0w  on the 

loaded area is obtained by calculating the 

integral [12] at any point of the strip, be it 

x 0= : 

( ) ( ) ln 0
0

2r1
w x w 0 w q

G b

−
= = = , 

for x 1  

(14) 

Outside the loaded strip, x 1 , the same 

substitution leads to the following expression 

for the slope of the deformed surface profile: 

( )
arcsin0

2 2

w

x

2 1 1 1
p

G x 1 2x 1


=



−
= −

 − −

 

(15) 

Equation (15) shows that, at the limits of 

the loaded zone, the slope of the deformed 

surface is infinite, the angle of the tangent with 

the horizontal being / 2 , and at infinity the 

tangent is horizontal. 

Johnson, Ref. [2], gives the following 

solution for moving w outside the charged 

zone: 

( )

( )

ln 2

z 0

w x

1
p b x x 1

G

=

−
=  − + −

 (16) 

where z  is an integration constant, 

unspecified. This can be determined from the 

condition of displacement continuity at the 

edge of the loaded strip, where formula [16] 

must provide its value given by relation [15]. 

After its identification, the following 

expression of the displacement w, outside the 

loading strip, results: 

( ) ln
( )

0

2

2r1
w x q

 G b x x 1

−
=
 + −

 (17) 

Pressure distribution with /n 1 2=  

(hertzian distribution)   

The case /n 1 2=  represents a load with 

maximum pressure 0p  on the symmetry axis 

of the strip and zero on its edges, known as 

Hertzian pressure. The maximum pressure 

value results, also in this case, by the 

particularization of equation [2]: 

0

2 q
p

 b
=


 (18) 
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The displacement’s expression w on the 

boundary of the half-space is obtained by the 

particularization of equation [4]: 

( )

ln( )

ln

1

2 2

0

1

0

w x

1
p b 1 x x x  dx

2  G

1 b
q

 G r

+

−

=

−
  = − − − −



−
−


  

(19) 

Since the integrand in equation [19] does not 

admit an obvious explicit primitive, it is 

convenient to evaluate the displacement’s 

derivative w: 

1 2

0

1

w 1 1 x
p  b  dx

x G x x
−

 − −
= −

  −  (20) 

In the case of the points on the loaded strip, 
21 x 0−  , the following expression of the 

deformed surface slope inside the loaded strip 

is obtained, after integration: 

0

w 1
p  b x

x G

 −
= −


 (21) 

The solution of differential equation [21] is 

immediate: 

( ) 2

0

1
w x p  b x C

2G

−
= − +  (22) 

where C is an integration constant that is 

determined from the condition that along the 

strip’s symmetry axis, at x 0= , ( )w w 0= ; 

results ( )C w 0=  and 

( ) ( ) 2

0

1
w x w 0 p  b x

2G

−
= −  (23) 

Relation [23] shows that, inside the loaded 

strip, the profile of the deformed surface is 

parabolic along the x direction. To calculate 

the central displacement, relation [19] is used, 

in which ( )w 0 , is substituted, obtaining: 

( )

( )
ln

ln

1

2

0

0

0

w 0

2 1
p  b 1-x x  dx

 G

1 b
q

 G r

=

−
  = − −



−
−


  
(24) 

Since the primitive of the above integral 

cannot be expressed with the help of a finite 

combination of elementary functions, this 

integral is calculated numerically, obtaining: 

( ) , ln
0

1 b
w 0 q 1 1932

 G r

 −
= − 
  

 (25) 

At the edge of the loaded strip, x 1= , the 

displacement in the z direction, ( )w 1 , has the 

value: 

( ) , ln
0

1 b
w 1 q 0 1932

 G r

 −
 = − 

  
 (26) 

The central displacement of the half-space in 

relation to the edges of the contact strip is: 

( ) ( )
1

w w 0 w 1 q
G

−
 = −  =


 (27) 

3. Conclusions 

Other types of loads are approached in the 

specialized literature. Thus, Love treats 

uniform pressure distribution on circular and 

rectangular areas. Galin treats uniform 

pressure distribution inside an acute angle and 

on long and narrow rectangular strips. and 

Fabrikant solves the problem of asymmetric 

loading with normal load on a circular area, 

respectively with an arbitrary distribution of 

tangential load, on the same type of area. 

Sackfield and Hills study the effects of 

uniform or semi-ellipsoidal shear stress 

distributions, applied to a rectangular area. 

Svec and Gladwell calculate the deformations 

of the free surface of the elastic half-space, 

generated by a continuous pressure 

distribution described by a cubic polynomial, 

applied to a triangular area. Chowdhury  

addresses the problem of the elastic half-space 
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subjected to a concentrated moment, normal to 

the free surface, while Shibuya considers the 

twisting moment applied to a circular crown 

contained within the boundary of the half-

space. Maiti, Bela Das and Palit use 

Somigliana's method to find the displacements 

produced by normal and tangential tractions 

applied on the half-space boundary, and 

Prescott treats the problem of the deformations 

of this boundary in cylindrical and spherical 

coordinates. 
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